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1. Introduction

A comprehensive model of alloy solidi®cation

requires the coupling of macro scale heat and mass

transport with local scale phenomena occurring in the

solid±liquid microstructure. A key local scale phenom-

enon is microsegregation Ð the partitioning and redis-

tribution of the solutes at the solid±liquid interface. In

most systems, the solutes are well mixed in the liquid

phase and microsegregation is controlled by solute dif-

fusion in the solid phase; a process referred to as

``back-di�usion''.

Microsegregation models are of two types, complete

numerical models [1±3], or semi-analytical and ap-

proximate relationships [4±8]. Recent work by the

author has focused on developing a range of approxi-

mate microsegregation relationships [9±12]. The com-

pletion of this work however, required the building of

a complete numerical model for benchmarking of the

approximate relationships. The aim of this note is to

provide a detailed report of this numerical model,

which has not previously been presented in the litera-

ture. The proposed model is similar in concept to the

recent work of Yoo and Kim [8] where the back-di�u-

sion, under the condition of a prescribed cooling rate,

is modeled with a parabolic pro®le assumption. In con-

trast, in this work a full numerical treatment of back-

di�usion is invoked and both a prescribed cooling rate
and parabolic solid growth model are developed.

2. The microsegregation model

A dilute binary eutectic alloy (e.g., aluminum±cop-

per) will be used as an example material. This alloy
solidi®es over a temperature range that de®nes a solid±
liquid mushy region, which is assumed to have a den-

dritic microstructure (see Fig. 1). The characteristic
length scale for microsegregation is the secondary arm
spacing, which will increase in length (coarsen) [13,14],
as the solidi®cation proceeds. As such, the domain of

the microsegregation model will be a representative
half-secondary arm space, X0(t ). Appropriate assump-
tions in this domain are: (1) mass di�usion in the

liquid is complete, i.e., at any point in time, the solute
concentration in the liquid phase C1 is uniform; (2)
equilibrium is maintained at the solid±liquid interface,

i.e., C i
s=kC1; (3) the liquidus line is straight; and (4)

at any point in time, due to the relatively rapid rate of
heat di�usion, the temperature in the arm spacing is

uniform.
The central component in the microsegregation

model is the solute balance in the half-arm spacing,
which can be written as�x s

0

Cs dx� �X0 ÿ Xs�C1 � X0C0 �1�

where Xs is the length of the solid phase in the half-
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arm space. Progress is made on introducing dimension-
less space and time variables

Z � x

Xfinal

, t � t

tfinal

�2�

where the superscript ``®nal'' indicates the value at the
®nal solidi®cation point. In terms of the new space
variable the solute balance can be written as

�Zs

0

Cs dZ� �Z0 ÿ Zs�C1 � Z0C0: �3�

On di�erentiating with respect to t

�Zs

0

@Cs

@t
dZ� �kÿ 1�C1

dZs

dt
� �Z0 ÿ Zs�

dC1

dt
� �C1

ÿ C0�dZ0
dt
� 0:

�4�

where it has been assumed that the average compo-

sition in the arm space remains ®xed at the initial
value of C0, i.e., no macrosegregation. Further simpli®-
cation is made on noting that in the solid part of the
domain, 0R ZR Zs, the solute di�usion is governed by

@Cs

@t
� a

@ 2Cs

@Z2
�5�

where

a � Dtfinal

X 2
final

�6�

is a Fourier number and D is the mass di�usivity in
the solid. Substitution of Eq. (5) in Eq. (4) gives, after
expanding the integral,

a
@Cs

@Z

����
Z�Zs

��kÿ 1�C1
dZs

dt
� �Z0 ÿ Zs�

dC1

dt
� �C1

ÿ C0�dZ0
dt
� 0:

�7�

This is the governing equation for the solute balance.
The ®rst term is the back-di�usion of solute into the
solid phase, the next two terms account for the redis-

tribution of solute due to the movement of the solid±
liquid front, and the last term accounts for solute
entering the domain due to coarsening.

Equation (7) is solved with a time marching numeri-
cal solution with the initial conditions Zs=0, C1=C0,
and @Cs/@ZvZ=0=0. In this solution, the back-di�usion
term is calculated using a deforming ®nite di�erence

Fig. 1. Solidi®cation and coarsening in a solidifying half-dendrite arm space.
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method (see detailed discussion below) and the coar-
sening is modeled as

Z0 � tn,
dZ0
dt
� ntnÿ1 �8�

where n (0(1/3) [13]) is a coarsening exponent.
To complete the solution of Eq. (7) it is necessary to

prescribe the rate of change of the liquid concentration
or the solid fraction in the arm spacing. This choice
leads to two alternative versions of the microsegrega-

tion model.

2.1. A constant rate model

In this version of the model, the arm space cools at

a prescribed constant rate and it follows, from the
assumptions of a uniform liquid concentration and a
straight liquidus, that

dC1

dt
� �C0 ÿ Cend�: �9�

Solidi®cation terminates at the prescribed composition
C1=Cend, and Eq. (7) is solved for the growth of the
solid. An Euler treatment gives the following time

marching solution

Zs � Zold
s

�Dt
"

BDold � �Z0 ÿ Zold
s ��C0 ÿ Ceut� � �C1 ÿ C0�ntnÿ1
�1ÿ k�C1

#
�10�

where Dt is the simulation time step, BD is an ap-
proximation for the back-di�usion term and the super-
script ``old'' indicates evaluation at the old time step.

Where possible, values in the function on the RHS of
Eq. (10) are evaluated at the current time step. The
exceptions are the back-di�usion term, BD, and the

solid length Zs. Strictly, within each time step, an itera-
tive solution should be used that updates these values.
In practice, however, it is found that using a small

time step with a single iteration of Eq. (10) is e�ective.

2.2. A parabolic growth model

In this version of the model the growth of the solid

fraction ( fs=Zs/Z0) in the half-arm space is parabolic
in time. In terms of the solid length

Zs � Z0t
1=2,

dZs

dt
� ntnÿ1 � 1

2
Z0t
ÿ1=2: �11�

Solidi®cation terminates at the prescribed solid length

Zs=Zend and Eq. (7) is solved for the liquid solute con-
centration. An Euler solution gives the following time
marching solution

C1 � C old
1

�Dt

24BDold � �kÿ 1�C old
1

dZs

dt
� �C old

1 ÿ C0�ntnÿ1
Zs ÿ Z0

35
:

�12�

Values on the RHS of Eq. (12) should be evaluated at

the current time and in the strict sense, iteration in the
time step is required to update the back-di�usion term,
BD, and the liquid concentration C1. As with the con-
stant rate model, however, a small time step and a

single application of Eq. (12) is su�cient.
Estimation of the back-di�usion term, BD, in the

Euler solution (Eq. (10) or Eq. (12)) requires the calcu-

lation of the solute pro®le, controlled by di�usion, in
the solid domain of the half-arm spacing. This domain,
0R ZR Zs(t ), is deforming in time and it is convenient

to carry out any analysis in the transformed domain
de®ned by the Landau transformation [15] x=Z/Zs(t ).
In this transformation, the solid domain, 0 R x R 1,
remains ®xed in time and the di�usion equation for

the solid solute (dropping the subscript ``s'' for nota-
tion convenience) is

@C

@t
� a

@ 2C

@Z2
�
�
Z
Zs

dZs

dt

�
@C

@Z
�13�

subject to the boundary conditions

@C

@Z

����
Z�0
� 0, and C jZ�Zs

� kC1�t� �14�

and the initial condition

C � C0: �15�

Note the time derivative on the LHS of Eq. (13) is
evaluated at constant values of the transformed vari-

able x and the bracketed term on the RHS is the vel-
ocity of a constant x point in real space Z. A
rearrangement of Eq. (13) is

1

Zs

@ �ZsC �
@t

� a
@ 2C

@Z2
� @

@x

�
C
Z
Zs

dZs

dt

�
: �16�

A discretization of this equation, on a uniform grid of
m nodes that deforms with the solid growth, leads to

the following time implicit ®nite di�erence scheme at
node point P

CPDZÿ C old
P DZold

DtDZ
� a

CE ÿ 2CP � CW

DZ2

� VeastCE ÿ VwestCP

DZ
:

�17�

The following points concerning Eq. (17) are noted.
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1. The subscripts ``W'' and ``E'' are for nodal values
to the east and west of point P, the subscript ``west''
and ``east'' refer to values at the mid points between

nodes, the term DZ is the grid spacing, the super-
script ``old'' refers to old time values, and

Vwest � Zwest

Zs

dZs

dt
and Veast � Zeast

Zs

dZs

dt

are the velocities of the control volume interfaces.
2. In the constant rate model the solid growth is ap-

proximated as dZs/dt=(ZsÿZ old
s )/Dt, with the value

of Zs taken from LHS of Eq. (10). In the parabolic
growth model dZs/dt is evaluated directly by Eq.

(11).
3. Upwinding has been used to treat the grid advection

terms.
4. At the boundary Z=0 (node 1) Eq. (17) becomes

CPDZÿ C old
P DZold

P

2DtDZ
� a

CE ÿ CP

DZ2
� VeastCE

DZ
�18�

5. The ®nite di�erence equations are closed on noting

that at the solid±liquid interface Cm � kC1:

At each time step solution of the ®nite di�erence
equations Ð a tri-diagonal matrix algorithm can be

usedÐwill provide the solute distribution in the solid.
From this distribution the back-di�usion term can be
approximated using a second order di�erence, i.e.,

BD � @C

@Z

����
Zs

� a
3Cm ÿ 4Cmÿ1 � Cmÿ2

2DZ
: �19�

3. Validation

There are four limiting analytical solutions that can

be use as basic test cases for the proposed microsegre-
gation model.

1. In the limit of complete di�usion in the solid a 4
1 the microsegregation in the arm spacing is
describe by the lever rule [16],

f � Zs

Z0
� 1

1ÿ k

�
1ÿ C0

C1

�
�20�

which is independent of the solidi®cation path or
the nature of the coarsening.

2. In the limit of zero solute di�usion in the solid a=0

and no coarsening, microsegregation is described by
the Gulliver±Scheil equation [17]

f � Zs

Z0
� 1ÿ

�
C1

C0

�1=�kÿ1�
: �21�

This relationship is independent of the solidi®cation
path, i.e., the expression is valid for both the con-
stant rate and parabolic growth.

3. In the limit of zero solute di�usion in the solid a=0
and coarsening governed by Eq. (8), Mortensen [14]
has derived the following analytical microsegrega-

tion relationship for an arm space cooled at a con-
stant rate

f � Zs

Z0
� 1� n

1ÿ k

C
�1=�kÿ1��
1

�C1 ÿ C0�n
�C1

C0

f�k=�1ÿk��f

ÿ C0�n df:

�22�

4. In the limit of zero solute di�usion in the solid a=0

and coarsening governed by Eq. (8), Voller and
Beckermann [11] have derived the following analyti-
cal microsegregation relationship for an arm space
with a parabolic growth rate of the solid fraction

Table 1

Basic comparisons of the Constant Rate Model with limiting analytical solutions for the solid fraction, f (k = 0.16, C0=4.9, and

Cend=20)

Analytical equation Analytical value of f Model prediction of f

Eq. (20) 0.81258 0.81260

Eq. (21) 0.89881 0.89871

Eq. (22) 0.82760 0.82790

Table 2

Basic comparisons of the parabolic growth rate model with limiting analytical solutions (k=0.16, C0=4.9, and fend=0.75)

Analytical equation Analytical value of kC1/C0 Model prediction of kC1/C0

Eq. (20) 0.51181 0.50736

Eq. (21) 0.43200 0.43103

Eq. (23) 0.49680 0.49720
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C1

C0
� 2n�1ÿ f ��1�2n�kÿ1

f 2n

� f

0

f2nÿ1�1

ÿ f�ÿ�1�2n�k df:

�23�

In Table 1, using aluminum±copper alloy data, the
performance of the proposed constant rate microsegre-
gation model is compared against the limiting sol-

utions, Eqs. (20±22). The parabolic growth model is
compared against the limiting analytical solutions,
Eqs. (20), (21) and (23), in Table 2. In both compari-
sons the agreement between the model and analytical

results is excellent. In all cases reported, converged
model solutions are obtained with 2000 time steps. In
matching the lever rule predictions 500 space steps are

used in the back-di�usion treatment and the Fourier
number is set to the high value of a=20. Where appro-
priate, the coarsening coe�cient is set at n=1/3 [13].

In the case of parabolic growth and no coarsening
Kobayashi [18] has developed and presented an ana-
lytical solution for microsegregation which includes

back-di�usion. For a range of Fourier numbers and
partition coe�cients, Kobayashi reports analytical
values of the maximum segregation ratio Ð i.e., the
ratio kC1=C0 Ð at the point where the solid fraction f

= 1 (complete solidi®cation). Predictions of the maxi-
mum segregation ratio, obtained with the parabolic
growth model, are compared with the analytical sol-

utions in Table 3. The comparison is reasonably good
with the maximum relative error not exceeding 2%.
With reference to the results in Table 3 it is noted

that: (1) the parabolic growth model will only work if
the prescribed end value of the solid fraction is fend <
1; and (2) as the solid fraction approaches unity there

is a very rapid increase in the solute concentration in

the liquid. Hence, predicting values close to the ana-

lytical maximum segregation level is a numerical chal-

lenge. The model results reported in Table 3 are

obtained by linearly extrapolating parabolic growth

model predictions from two high values of fend. In

most cases the values fend=0.999 and fend=0.9995 are

used, at large values of k and a, however, due to poor

convergence, it is necessary to reduce the values to

fend=0.99 and fend=0.995.

In all applications of the parabolic growth model

8000 time steps in the Euler solution and 500 space

steps in the back-di�usion solution are used. These

values were reached after a convergence study.

In a binary-eutectic alloy when the liquid concen-

tration reaches the eutectic, C1=Ceut, a non-equi-

librium second phase is precipitated and the remaining

liquid forms a solid eutectic of ®xed average compo-

sition. Using a Bridgeman furnace Sarreal and

Abbaschian [19] conducted experiments to determine

the e�ect of solidi®cation time, t®nal, on the fraction of

eutectic that forms in an aluminum±4.9% copper

alloy. Table 4 gives the measured eutectic fractions

against Fourier number. Note that: (1) the reported

eutectic values in Table 4 are obtained by converting

the nonequlibrium second phase values reported by

Sarreal and Abbaschain, see Voller and Sundarraj [3]

for details; (2) the ®nal arm spacing are obtained using

a Kirkwood [13] coarsening model of the form l �
2X0 � 9:4t1=3f [10], which has a coarsening exponent of

n = 1/3; (3) the eutectic concentrtaion is Ceut=33.2%;

and (4) a constant di�usion value of D = 5 � 10ÿ13

m2/s is used.

Fig. 2 compares the predictions of the constant rate

model with the measured values. In the constant rate

model Cend=Ceut, when this point is reached the frac-

Table 3

Values of the ratio kC1/C0 on complete solidi®cation [comparison of Kobayashi [18] analytical solution with predictions obtained

using the parabolic growth rate model)

a=0.05 a=0.15 a=0.5

Analytical Model Analytical Model Analytical Model

k=0.2 13.60 13.39 5.92 5.94 2.60 2.50

k=0.4 4.78 4.83 2.65 2.66 1.56 1.56

Table 4

Measured values of eutectic fraction

Solidi®cation time tf (s) 0.52 1.51 8.72 93.3 980

Arm spacing l=2X0 (mm) 7.56 10.78 19.35 42.63 93.35

Fourier No. a=Dtf /X
2
o 0.0182 0.0260 0.0466 0.1027 0.2249

% Fraction of eutectic 7.5 7.16 6.84 6.52 5.54
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tion of eutectic is given by (1ÿZs). Agreement between
the model and experimental predictions is good. As a
point of comparison the eutectic predictions obtained
with no coarsening (n = 0) are also shown, this pro-

vides a graphical reference for the e�ect of coarsening
on the microsegregation.

4. Conclusions

Modeling microsegregation is a key component in a
comprehensive solidi®cation model. Usually, due to

resource limitations, only approximate microsegrega-
tion relationships are used in large-scale solidi®cation
analysis. For this approach to be valid, however, it is

important that the performance of the approximation
is checked against complete and detailed numerical
microsegregation models. This paper has presented
two versions of a numerical microsegragtion models

that can be used for this purpose. In the ®rst version
of the model, the solidi®cation is controlled by a con-
stant cooling rate. In the second, a parabolic growth

rate is assumed. Both models account for back-di�u-
sion of solute into the solid and coarsening of the arm
space.

The models are checked and validated by comparing
with limiting analytical solutions and experimental
measurements. These comparisons indicate that both

versions of the model function correctly and can pro-
vide accurate and practical predictions.
Copies of documented Fortran codes for the two ver-

sions of the microsegregation models can befound at
the following web site http://www.ce.umn.edu/0voller.
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